Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119558, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37549740

RESUMO

Cytoglobin (Cygb) is an evolutionary ancient heme protein with yet unclear physiological function(s). Mammalian Cygb is ubiquitously expressed in all tissues and is proposed to be involved in reactive oxygen species (ROS) detoxification, nitric oxide (NO) metabolism and lipid-based signaling processes. Loss-of-function studies in mouse associate Cygb with apoptosis, inflammation, fibrosis, cardiovascular dysfunction or oncogenesis. In zebrafish (Danio rerio), two cygb genes exist, cytoglobin 1 (cygb1) and cytoglobin 2 (cygb2). Both have different coordination states and distinct expression sites within zebrafish tissues. The biological roles of the cygb paralogs are largely uncharacterized. We used a CRISPR/Cas9 genome editing approach and generated a knockout of the penta-coordinated cygb1 for in vivo analysis. Adult male cygb1 knockouts develop phenotypic abnormalities, including weight loss. To identify the molecular mechanisms underlying the occurrence of these phenotypes and differentiate between function and effect of the knockout we compared the transcriptomes of cygb1 knockout at different ages to age-matched wild-type zebrafish. We found that immune regulatory and cell cycle regulatory transcripts (e.g. tp53) were up-regulated in the cygb1 knockout liver. Additionally, the expression of transcripts involved in lipid metabolism and transport, the antioxidative defense and iron homeostasis was affected in the cygb1 knockout. Cygb1 may function as an anti-inflammatory and cytoprotective factor in zebrafish liver, and may be involved in lipid-, iron-, and ROS-dependent signaling.


Assuntos
Globinas , Peixe-Zebra , Masculino , Camundongos , Animais , Citoglobina/genética , Citoglobina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Globinas/genética , Globinas/metabolismo , Metabolismo dos Lipídeos/genética , Espécies Reativas de Oxigênio , Estresse Oxidativo/genética , Homeostase/genética , Lipídeos , Mamíferos/metabolismo
2.
Genome Biol Evol ; 13(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33871590

RESUMO

The members of the globin superfamily are a classical model system to investigate gene evolution and their fates as well as the diversity of protein function. One of the best-known globins is myoglobin (Mb), which is mainly expressed in heart muscle and transports oxygen from the sarcolemma to the mitochondria. Most vertebrates harbor a single copy of the myoglobin gene, but some fish species have multiple myoglobin genes. Phylogenetic analyses indicate an independent emergence of multiple myoglobin genes, whereby the origin is mostly the last common ancestor of each order. By analyzing different transcriptome data sets, we found at least 15 multiple myoglobin genes in the polypterid gray bichir (Polypterus senegalus) and reedfish (Erpetoichthys calabaricus). In reedfish, the myoglobin genes are expressed in a broad range of tissues but show very different expression values. In contrast, the Mb genes of the gray bichir show a rather scattered expression pattern; only a few Mb genes were found expressed in the analyzed tissues. Both, gray bichir and reedfish possess lungs which enable them to inhabit shallow and swampy waters throughout tropical Africa with frequently fluctuating and low oxygen concentrations. The myoglobin repertoire probably reflects the molecular adaptation to these conditions. The sequence divergence, the substitution rate, and the different expression pattern of multiple myoglobin genes in gray bichir and reedfish imply different functions, probably through sub- and neofunctionalization during evolution.


Assuntos
Peixes , Mioglobina , Animais , Evolução Molecular , Peixes/genética , Mioglobina/genética , Filogenia , Vertebrados/genética
3.
Nature ; 590(7845): 284-289, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33461212

RESUMO

Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Peixes/genética , Marcha/genética , Genoma/genética , Pulmão , Vertebrados/genética , Ar , Nadadeiras de Animais/anatomia & histologia , Animais , Teorema de Bayes , Cromossomos/genética , Extremidades/anatomia & histologia , Feminino , Peixes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Genômica , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Pulmão/anatomia & histologia , Pulmão/fisiologia , Camundongos , Anotação de Sequência Molecular , Filogenia , Respiração , Olfato/fisiologia , Sintenia , Vertebrados/fisiologia , Órgão Vomeronasal/anatomia & histologia
4.
Neuroscience ; 451: 226-239, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002555

RESUMO

While the brain of most mammals suffers from irreversible damage after only short periods of low oxygen levels (hypoxia), marine mammals are excellent breath-hold divers that have adapted to hypoxia. In addition to physiological adaptations, such as large oxygen storing capacity and strict oxygen economy during diving, the neurons of the deep-diving hooded seal (Cystophora cristata) have an intrinsic tolerance to hypoxia. We aim to understand the molecular basis of this neuronal hypoxia tolerance. Previously, transcriptomics of the cortex of the hooded seal have revealed remarkably high expression levels of S100B and clusterin (apolipoprotein J) when compared to the ferret, a non-diving carnivore. Both genes have much-debated roles in hypoxia and oxidative stress. Here, we evaluated the effects of S100B and of two isoforms of clusterin (soluble and nucleus clusterin) on the survival, metabolic activity and the amount of reactive oxygen species (ROS) in HN33 neuronal mouse cells exposed to hypoxia and oxidative stress. S100B and soluble clusterin had neuroprotective effects, with reduced ROS-levels and retention of normoxic energy status of cells during both stress conditions. The protective effects of nucleus clusterin were restricted to hypoxia. S100B and clusterin showed purifying selection in marine and terrestrial mammals, indicating a functional conservation across species. Immunofluorescence revealed identical cellular distributions of S100B and clusterin in mice, ferrets and hooded seals, further supporting the functional conservation. Taken together, our data suggest that the neuroprotective effects of all three proteins are exclusively facilitated by their increased expression in the brain of the hooded seal.


Assuntos
Clusterina , Focas Verdadeiras , Animais , Encéfalo , Técnicas de Cultura de Células , Hipóxia , Camundongos , Subunidade beta da Proteína Ligante de Cálcio S100
5.
Artigo em Inglês | MEDLINE | ID: mdl-31676411

RESUMO

The brain of diving mammals is repeatedly exposed to low oxygen conditions (hypoxia) that would have caused severe damage to most terrestrial mammals. Some whales may dive for >2 h with their brain remaining active. Many of the physiological adaptations of whales to diving have been investigated, but little is known about the molecular mechanisms that enable their brain to survive sometimes prolonged periods of hypoxia. Here, we have used an RNA-Seq approach to compare the mRNA levels in the brains of whales with those of cattle, which serves as a terrestrial relative. We sequenced the transcriptomes of the brains from cattle (Bos taurus), killer whale (Orcinus orca), and long-finned pilot whale (Globicephala melas). Further, the brain transcriptomes of cattle, minke whale (Balaenoptera acutorostrata) and bowhead whale (Balaena mysticetus), which were available in the databases, were included. We found a high expression of genes related to oxidative phosphorylation and the respiratory electron chain in the whale brains. In the visual cortex of whales, transcripts related to the detoxification of reactive oxygen species were more highly expressed than in the visual cortex of cattle. These findings indicate a high oxidative capacity in the whale brain that might help to maintain aerobic metabolism in periods of reduced oxygen availability during dives.


Assuntos
Adaptação Fisiológica , Encéfalo/fisiologia , Mergulho/fisiologia , Fosforilação Oxidativa , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma , Animais , Bovinos , Masculino , Mamíferos , Análise de Sequência de RNA , Baleias
6.
FEBS J ; 287(8): 1598-1611, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31610084

RESUMO

It is known that the West African lungfish (Protopterus annectens) harbours multiple myoglobin (Mb) genes that are differentially expressed in various tissues and that the Mbs differ in their abilities to confer tolerance towards hypoxia. Here, we show that other lungfish species (Protopterus dolloi, Protopterus aethiopicus and Lepidosiren paradoxa) display a similar diversity of Mb genes and have orthologous Mb genes. To investigate the functional diversification of these genes, we studied the structures, O2 binding properties and nitrite reductase enzymatic activities of recombinantly expressed P. annectens Mbs (PanMbs). CD spectroscopy and small-angle X-ray scattering revealed the typical globin-fold in all investigated recombinant Mbs, indicating a conserved structure. The highest O2 affinity was measured for PanMb2 (P50  = 0.88 Torr at 20 °C), which is mainly expressed in the brain, whereas the muscle-specific PanMb1 has the lowest O2 affinity (P50  = 3.78 Torr at 20 °C), suggesting that tissue-specific O2 requirements have resulted in the emergence of distinct Mb types. Two of the mainly neuronally expressed Mbs (PanMb3 and PanMb4b) have the highest nitrite reductase rates. These data show different O2 binding and enzymatic properties of lungfish Mbs, reflecting multiple subfunctionalisation and neofunctionalisation events that occurred early in the evolution of lungfish. Some Mbs may have also taken over the functions of neuroglobin and cytoglobin, which are widely expressed in vertebrates but appear to be missing in lungfish.


Assuntos
Peixes/genética , Mioglobina/genética , Mioglobina/metabolismo , Animais , Mioglobina/isolamento & purificação , Oxigênio/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
7.
Neuroscience ; 366: 138-148, 2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29031607

RESUMO

Neuroglobin (Ngb) is a member of the globin family of respiratory proteins, which was recently observed in many neurons of the auditory pathways. Up to now, however, nothing was known about the role of Ngb in hearing processes. We therefore studied auditory function by recording distortion-product otoacoustic emissions (DPOAE) and auditory brainstem responses (ABRs) in wild-type (C57BL/6N) and Ngb-knockout mice. In KO mice, DPOAE thresholds were moderately augmented in the range of 5-18 kHz, reaching statistical significance at 8 and 10 kHz, while the ABR thresholds were not different between groups. The activation of the efferent system by an additional noise given to the contralateral ear resulted in an increased f2-f1-emission level only in WT animals. A noise exposure resulted in similar acute threshold shifts in the DPOAE and ABR of both animal groups. The recovery of hearing function, expressed by decreased DPOAE thresholds, was not significantly different between groups after four days and after four weeks. ABR recordings showed that threshold shifts elicited by noise-trauma were slightly better revised in wild-type mice. While ABR amplitudes were similar in both groups before noise overexposure, four weeks after trauma a moderate but statistically significant decrease of the latest peak-to-peak response amplitude (originating in the inferior colliculus) was observed in KO mice. Our results suggest that the lack of Ngb, at least in the model used in the present study, results in only marginal deficits in hearing ability. A putative functional role of Ngb in the efferent system warrants further studies.


Assuntos
Percepção Auditiva/fisiologia , Globinas/fisiologia , Audição/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Estimulação Acústica , Animais , Potenciais Evocados Auditivos do Tronco Encefálico , Globinas/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neuroglobina
8.
Front Neurosci ; 11: 122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28348515

RESUMO

Animals living at high or temperate latitudes are challenged by extensive changes in environmental conditions over seasons. Djungarian hamsters (Phodopus sungorus) are able to cope with extremely cold ambient temperatures and food scarcity in winter by expressing spontaneous daily torpor. Daily torpor is a circadian controlled voluntary reduction of metabolism that can reduce energy expenditure by up to 65% when used frequently. In the past decades it has become more and more apparent, that the hypothalamus is likely to play a key role in regulating induction and maintenance of daily torpor, but the molecular signals, which lead to the initiation of daily torpor, are still unknown. Here we present the first transcriptomic study of hypothalamic gene expression patterns in Djungarian hamsters during torpor entrance. Based on Illumina sequencing we were able to identify a total number of 284 differentially expressed genes, whereby 181 genes were up- and 103 genes down regulated during torpor entrance. The 20 most up regulated group contained eight genes coding for structure proteins, including five collagen genes, dnha2 and myo15a, as well as the procoagulation factor vwf. In a proximate approach we investigated these genes by quantitative real-time PCR (qPCR) analysis over the circadian cycle in torpid and normothermic animals at times of torpor entrance, mid torpor, arousal and post-torpor. These qPCR data confirmed up regulation of dnah2, myo15a, and vwf during torpor entrance, but a decreased mRNA level for all other investigated time points. This suggests that gene expression of structure genes as well as the procoagulation factor are specifically initiated during the early state of torpor and provides evidence for protective molecular adaptions in the hypothalamus of Djungarian hamsters including changes in structure, transport of biomolecules and coagulation.

9.
PLoS One ; 12(1): e0169366, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28046118

RESUMO

The brain of diving mammals tolerates low oxygen conditions better than the brain of most terrestrial mammals. Previously, it has been demonstrated that the neurons in brain slices of the hooded seal (Cystophora cristata) withstand hypoxia longer than those of mouse, and also tolerate reduced glucose supply and high lactate concentrations. This tolerance appears to be accompanied by a shift in the oxidative energy metabolism to the astrocytes in the seal while in terrestrial mammals the aerobic energy production mainly takes place in neurons. Here, we used RNA-Seq to compare the effect of hypoxia and reoxygenation in vitro on brain slices from the visual cortex of hooded seals. We saw no general reduction of gene expression, suggesting that the response to hypoxia and reoxygenation is an actively regulated process. The treatments caused the preferential upregulation of genes related to inflammation, as found before e.g. in stroke studies using mammalian models. Gene ontology and KEGG pathway analyses showed a downregulation of genes involved in ion transport and other neuronal processes, indicative for a neuronal shutdown in response to a shortage of O2 supply. These differences may be interpreted in terms of an energy saving strategy in the seal's brain. We specifically analyzed the regulation of genes involved in energy metabolism. Hypoxia and reoxygenation caused a similar response, with upregulation of genes involved in glucose metabolism and downregulation of the components of the pyruvate dehydrogenase complex. We also observed upregulation of the monocarboxylate transporter Mct4, suggesting increased lactate efflux. Together, these data indicate that the seal brain responds to the hypoxic challenge by a relative increase in the anaerobic energy metabolism.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio/metabolismo , Focas Verdadeiras/genética , Animais , Metabolismo Energético/genética , Regulação da Expressão Gênica , Ontologia Genética , Complexo Piruvato Desidrogenase/metabolismo , Análise de Sequência de RNA , Córtex Visual/metabolismo
10.
BMC Genomics ; 17: 583, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27507242

RESUMO

BACKGROUND: During long dives, the brain of whales and seals experiences a reduced supply of oxygen (hypoxia). The brain neurons of the hooded seal (Cystophora cristata) are more tolerant towards low-oxygen conditions than those of mice, and also better survive other hypoxia-related stress conditions like a reduction in glucose supply and high concentrations of lactate. Little is known about the molecular mechanisms that support the hypoxia tolerance of the diving brain. RESULTS: Here we employed RNA-seq to approach the molecular basis of the unusual stress tolerance of the seal brain. An Illumina-generated transcriptome of the visual cortex of the hooded seal was compared with that of the ferret (Mustela putorius furo), which served as a terrestrial relative. Gene ontology analyses showed a significant enrichment of transcripts related to translation and aerobic energy production in the ferret but not in the seal brain. Clusterin, an extracellular chaperone, is the most highly expressed gene in the seal brain and fourfold higher than in the ferret or any other mammalian brain transcriptome. The largest difference was found for S100B, a calcium-binding stress protein with pleiotropic function, which was 38-fold enriched in the seal brain. Notably, significant enrichment of S100B mRNA was also found in the transcriptomes of whale brains, but not in the brains of terrestrial mammals. CONCLUSION: Comparative transcriptomics indicates a lower aerobic capacity of the seal brain, which may be interpreted as a general energy saving strategy. Elevated expression of stress-related genes, such as clusterin and S100B, possibly contributes to the remarkable hypoxia tolerance of the brain of the hooded seal. Moreover, high levels of S100B that possibly protect the brain appear to be the result of the convergent adaptation of diving mammals.


Assuntos
Encéfalo/metabolismo , Mergulho , Focas Verdadeiras/genética , Focas Verdadeiras/metabolismo , Animais , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mamíferos , Anotação de Sequência Molecular , Transcriptoma , Córtex Visual/metabolismo
11.
Neuroscience ; 337: 339-354, 2016 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-27542528

RESUMO

Neuroglobin (Ngb) is a respiratory protein that is almost exclusively expressed in the vertebrate nervous system. Despite many years of research, the exact function and even the expression sites of Ngb are still a matter of debate. However, to investigate hypotheses surrounding the potential roles of Ngb, a detailed knowledge of its major and minor expression sites is indispensable. We have therefore evaluated Ngb expression by extensive bioinformatic analysis using publicly available transcriptome data (RNA-Seq). During mammalian brain development, we observed low embryonic expression of Ngb mRNA and an increase after birth, arguing against a role of Ngb in fetal hypoxia tolerance. In adult mouse brain, we found highest Ngb mRNA levels in the hypothalamus, where expression was up to 100-fold stronger than in cerebral cortex, cerebellum or hippocampus, as confirmed by qRT-PCR and Western blotting. High Ngb expression in the hypothalamus was found conserved in humans and other mammals. Thus, Ngb mRNA is expressed at a basal level in many mammalian brain regions, but shows distinctive regional peaks. RNA-Seq analysis further revealed only low levels of Ngb mRNA in retina and testes and no signal in standard tumor cell lines, thus raising questions concerning previous studies and functional hypotheses. In conclusion, this broad-scale expression study may point to distinct Ngb functions for high- and low-expressing cells and tissues and argues against a single, generic role of Ngb as an oxygen supplier or as an endogenous protectant in all nerve cells.


Assuntos
Córtex Cerebral/metabolismo , Globinas/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Cerebelo/metabolismo , Mamíferos , Camundongos , Neuroglobina , RNA Mensageiro/metabolismo
12.
J Comp Physiol B ; 186(3): 373-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26820264

RESUMO

The brains of some diving mammals can withstand periods of severe hypoxia without signs of deleterious effects. This may in part be due to an enhanced cerebral capacity for anaerobic energy production. Here, we have tested this hypothesis by comparing various parameters of the lactate dehydrogenase (LDH) in the brain of the hooded seal (Cystophora cristata) with those in the brains of the ferret (Mustela putorius furo) and mouse (Mus musculus). We found that mRNA and protein expression of lactate dehydrogenase a (LDHA) and lactate dehydrogenase b (LDHB), and also the LDH activity were significantly higher in the ferret brain than in brains of the hooded seal and the mouse (p < 0.0001). No conspicuous differences in the LDHA and LDHB sequences were observed. There was also no difference in the buffering capacities of the brains. Thus, an enhanced capacity for anaerobic energy production likely does not explain the higher hypoxia tolerance of the seal brain. However, the brain of the hooded seal had higher relative levels of LDHB isoenzymes (LDH1 and LDH2) compared to the non-diving mammals. Moreover, immunofluorescence studies showed more pronounced co-localization of LDHB and glial fibrillary acidic protein in the cortex of the hooded seal. Since LDHB isoenzymes primarily catalyze the conversion of lactate to pyruvate, this finding suggests that the contribution of astrocytes to the brain aerobic metabolism is higher in the hooded seal than in non-diving species. The cerebral tolerance of the hooded seal to hypoxia may therefore partly rely on different LDH isoenzymes distribution.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/enzimologia , Mergulho/fisiologia , L-Lactato Desidrogenase/metabolismo , Focas Verdadeiras/fisiologia , Animais , Western Blotting , Encéfalo/fisiologia , Eletroforese/métodos , Furões/metabolismo , Regulação Enzimológica da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , Camundongos
13.
J Comp Physiol B ; 186(2): 161-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26515963

RESUMO

Hemocyanin transports oxygen in the hemolymph of many arthropod species. Within the crustaceans, this copper-containing protein was thought to be restricted to Malacostraca, while other crustacean classes were assumed to employ hemoglobin or lack any respiratory protein. Only recently it has become evident that hemocyanins also occur in Remipedia and Ostracoda. Here we report for the first time the identification and characterisation of hemocyanin in the fish louse Argulus, which belongs to the class of Branchiura. This finding indicates that hemocyanin was the principal oxygen carrier in the stem lineage of the pancrustaceans, but has been lost independently multiple times in crustacean taxa. We obtained the full-length cDNA sequences of two hemocyanin subunits of Argulus foliaceus by a combination of RT-PCR, RACE and Illumina sequencing of the transcriptome. In addition, one full-length and one partial cDNA sequence were derived from the transcriptome data of Argulus siamensis. Western blot analysis confirmed the presence of at least two hemocyanin subunits in A. foliaceus, which are expressed at the mRNA level at a 1:3.5 ratio. The addition to the branchiuran hemocyanin subunits to a multiple sequence alignment of arthropod, hemocyanins improved the phylogenetic resolution within the pancrustacean hemocyanins. Malacostracan, ostracod and branchiuran hemocyanins are distinct from the hexapod and remipede hemocyanins, reinforcing the hypothesis of a close relationship of Remipedia and Hexapoda. Notably, the ostracod hemocyanins are paraphyletic with respect to the branchiuran hemocyanins, indicating ancient divergence and differential loss of distinct subunit types.


Assuntos
Arguloida/metabolismo , Peixes/parasitologia , Hemocianinas/metabolismo , Oxigênio/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Evolução Molecular , Hemocianinas/química , Hemocianinas/genética , Hemocianinas/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína
14.
PLoS One ; 10(8): e0135911, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26273839

RESUMO

Hypoxia has gained ecological importance during the last decades, and it is the most dramatically increasing environmental factor in coastal areas and estuaries. The gills of fish are the prime target of hypoxia and other stresses. Here we have studied the impact of the exposure to hypoxia (1.5 mg O2/l for 48 h) on the protein expression of the gills of two estuarine fish species, the ruffe (Gymnocephalus cernua) and the European flounder (Platichthys flesus). First, we obtained the transcriptomes of mixed tissues (gills, heart and brain) from both species by Illumina next-generation sequencing. Then, the gill proteomes were investigated using two-dimensional gel electrophoresis and mass spectrometry. Quantification of the normalized proteome maps resulted in a total of 148 spots in the ruffe, of which 28 (18.8%) were significantly regulated (> 1.5-fold). In the flounder, 121 spots were found, of which 27 (22.3%) proteins were significantly regulated. The transcriptomes were used for the identification of these proteins, which was successful for 15 proteins of the ruffe and 14 of the flounder. The ruffe transcriptome dataset comprised 87,169,850 reads, resulting in an assembly of 72,108 contigs (N50 = 1,828 bp). 20,860 contigs (26.93%) had blastx hits with E < 1e-5 in the human sequences in the RefSeq database, representing 14,771 unique accession numbers. The flounder transcriptome with 78,943,030 reads assembled into 49,241 contigs (N50 = 2,106 bp). 20,127 contigs (40.87%) had a hit with human proteins, corresponding to 14,455 unique accession numbers. The regulation of selected genes was confirmed by quantitative real-time RT-PCR. Most of the regulated proteins that were identified by this approach function in the energy metabolism, while others are involved in the immune response, cell signalling and the cytoskeleton.


Assuntos
Proteínas de Peixes/biossíntese , Linguado/metabolismo , Brânquias/metabolismo , Hipóxia/metabolismo , Proteoma/biossíntese , Transcriptoma , Animais , Bases de Dados Genéticas , Proteínas de Peixes/genética , Linguado/genética , Hipóxia/genética , Proteoma/genética , Proteômica
15.
Mol Biol Evol ; 29(4): 1105-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22115833

RESUMO

Comparative genomic studies have led to the recent identification of several novel globin types in the Metazoa. They have revealed a surprising evolutionary diversity of functions beyond the familiar O(2) supply roles of hemoglobin and myoglobin. Here we report the discovery of a hitherto unrecognized family of proteins with a unique modular architecture, possessing an N-terminal calpain-like domain, an internal, circular permuted globin domain, and an IQ calmodulin-binding motif. Putative orthologs are present in the genomes of many metazoan taxa, including vertebrates. The calpain-like region is homologous to the catalytic domain II of the large subunit of human calpain-7. The globin domain satisfies the criteria of a myoglobin-like fold but is rearranged and split into two parts. The recombinantly expressed human globin domain exhibits an absorption spectrum characteristic of hexacoordination of the heme iron atom. Molecular evolutionary analyses indicate that this chimeric globin family is phylogenetically ancient and originated in the common ancestor to animals and choanoflagellates. In humans and mice, the gene is predominantly expressed in testis tissue, and we propose the name "androglobin" (Adgb). Expression is associated with postmeiotic stages of spermatogenesis and is insensitive to experimental hypoxia. Evidence exists for increased gene expression in fertile compared with infertile males.


Assuntos
Proteínas de Ligação a Calmodulina/biossíntese , Globinas/biossíntese , Globinas/genética , Testículo/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Ligação a Calmodulina/química , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Calpaína/química , Calpaína/genética , Calpaína/metabolismo , Evolução Molecular , Globinas/química , Globinas/metabolismo , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Família Multigênica , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...